Search This Blog

Saturday, February 25, 2023

Update on discrete aether sunspot number prediction... beating NOAA like a rug...


The reported cycle 25 sunspot number agrees very well with the discrete aether prediction. The 11.4 lyr distances of Procyon and 61Cygni from the sun are responsible for the 11.4 yr convection cycle of sunspot activity that has been tracked since 1600.

The well-known dearth of sunspots at the Maunder Minimum in 1680 coincided with a very cold period known as the little ice age. The discrete aether model shows that the Maunder Minimum was due to a particular alignment of the 61Cygni double star orbit.

Saturday, February 18, 2023

Variation of Fine-Structure Constant over Cosmic Time

In a collapsing universe, cosmic time is different from an atom time since atom time is never at rest given the evolution of collapse rate from zero at the cmb creation to the speed of light at the final blackhole destiny. The red shifts of galaxy look-back spectra in the collapsing universe, unlike an expanding universe, are then due to both galaxy cosmic age as well as the velocity of universe collapse. Blackhole horizons in the collapsing universe are no longer singularities even though they still stop atom time and still exist in the flow of cosmic time of collapse.

In the expanding universe of contemporary Science, cosmic time is the same as atom time at rest with a constant expansion, but atom time does depend on relative velocity and acceleration. According to Science, the red shifts of galaxy spectra are then due to increasing galaxy velocities with look-back time in the expanding universe. Blackhole singularity horizons, though, do stop atom time and yet still exist in the flow of cosmic time expansion.

While some constants of Science are constants in the collapsing universe, the fine-structure constant as well as the speed of light do vary with universe collapse, but the fine-structure splittings of distant galaxies still remain proportional to contemporary splittings. Many argue against universe collapse since the fine-structure splittings of distant galaxies are proportional to contemporary fine-structure splittings. However, the fine-structure splittings are proportional to ratio of transition energy and relativistic electron energy, En/(mec2), and this ratio is constant in the collapsing universe [see Griffiths and Schroeter, Introduction to QM, 2018, 7.3.2]. This is because while Eand c both increase in the collapsing universe, mdecreases over cosmic time.

The collapsing universe is Lorentz invariant and maintains the equivalence of mass and energy just as does the expanding universe relativity. But the speed of light varies in the collapsing universe since the speed of light reflects the universe collapse rate for each epoch and not for all epochs as in the expanding universe. The classical electron spin rate, c/α, in the collapsing universe is constant and so α the fine-structure constant varies in the same way as does c.