Search This Blog

Sunday, November 20, 2016

Quantum Phase Noise

In the aether universe, there are still no absolute locations like a single center of the universe and that center was one of the original ideas about aether. However, the CMB velocity does provide a universal frame of reference for motion or action since anyone in the universe can measure their velocity, vae, with respect to the CMB, which is the velocity of creation. The CMB creation velocity defines the speed of light in the current epoch of aethertime and that velocity vae increases with decoherence time. There is a quantum phase noise, d,  due to the universal decay of quantum aether at aether velocity along with growing force due to increasing speed of light.

The absolute determinate goedesic paths of general relativity remain determinate with the biphoton quantum gravity of aethertime. However, action and matter along the gravity geodesic are uncertain just as the paths of quantum charge are never completely certain even though quantum aether paths are mostly knowable. In fact, the paths of all sources in the universe are perturbed by both the chaos of classical noise as well as quantum phase noise. The classical noise of the chaos of intensity fluctuation is usually many orders of magnitude greater than the coherence of quantum phase noise.

While classical noise is largely responsible for the entropy that is the arrow of classical time, it is the decoherence of quantum phase noise that sets the arrow of decoherence time for microscopic matter and therefore of all matter as well.

Reference: Original figure from Blumschein.

Sunday, November 13, 2016

Getting from Here to There

A quantum event occurs when an excited source photon is in resonance with and therefore goes on to excite an observer with that same photon. While science approximates such quantum transitions or jumps as instantaneous, that approximation is not really true even though it is often quite useful. In other words, getting a photon from here to there does take time and there are no instantaneous photon transfers.

One very common classical approximation of a quantum event is to have a excited source photon excite a classical observer in a completely separate second event long after the photon travels for a period through space following a first and separate source emission event. This is only an approximation and for a quantum observer, the same photon excites a quantum observer during the same event as the source emission.

A second classical approximation occurs when both source and observer are excited with very long wavelength photons. For the very special case of very long wavelength gravity biphotons, the two complementary gravity excited states remain in phase coherence because gravity phase coherence decays very, very slowly.

For single photons, an excited quantum source and observer are coupled by both phase as well as amplitude as the figure shows. Quantum photon travel is then simply a matter of phase between source and observer and a photon event creates a transient resonant bond between the observer and source. It is not really the photon that journeys through space and time, it is the action of the photon event that exchanges mass between source and observer during the same event just with different phases.

Quantum gravity between the two hydrogen atoms shown involves the complementary exchange of the biphoton excitations that exist in each atom. Unlike the relatively short wavelength of the Rydberg photon at 13.6 eV, the very long wavelengths of complementary gravity biphoton excitations mean that phase decay is very slow. Thus the very slow phase decay of quantum gravity means that classical gravity does not need to include phase for precise predictions of quantum action.
A photon event can be over in a few nanoseconds and nanometers or a photon event can last the age and radius of the universe. Now to be sure, a source can dephase from a photon event long before the photon excites an observer. However, phase decay is simply a part of how the universe points the direction of time and does not change the fact that there is some period of phase coherence between source and observer. For the very slow phase decay of quantum gravity means that until very large scale, classical gravity works very well.

Thus a classical photon excites an observer but does not retain any of the phase coherence of the excited source emission or never loses phase coherence while phase coherence between excited source and observer quantum photons necessarily decays. Indeed a quantum resonance can actually end up with the excitation largely back at the source and not lost to the observer at all. Even such a failed photon transmission has still generated phase coherence between the source and observer and therefore has changed source and observer entropy. In this realm, entropy alone drives quantum information transfer instead of total free energy transfer. Only a very small fraction of the photon free energy is in its entropy.

In a classical approximation for a quantum state-to-state transition, there must be a series of vacuum states that span the gap between two states. In aethertime, the density of states of quantum gravity biphotons in space is very large and more than provides the needed laddering for filling the gap. Similar to phonon decay in the solid state, gravity vacuum modes provide the mechanism to bridge the gap. These high order quantum gravity states are then what carry photon amplitude and phase and replace the vacuum oscillator modes of QED.

In quantum gravity, both source and observer exchange complementary biphoton excitations with each other. So a quantum gravity resonance always involves the exchange of complementary phase coherence between observer and source. This means that quantum gravity phase coherence between a source and observer always decays very, very slowly.

Saturday, November 5, 2016

Hydrogens' Gravity and Dispersion Spectra

Although the spectrum of the hydrogen atom has been known for over a century, atomic hydrogen's dispersion spectrum is not as well known and hydrogen's gravity spectrum has not yet been measured at all. This is because unlike the single photon exchanges of charge force, dispersion and gravity forces involve two photon exchanges and are much smaller and so their quantum energies and cross sections are therefore much more difficult to measure.

Dispersive or dielectric forces are the dipole-induced-dipole attraction of neutral matter and scale as the product of ionization energy, polarizabilty2, and 1/r6. Thus dispersion is the result of the complementary exchanges of two photons and not just one photon as in charge force and so dispersion is always attractive, just like gravity. The dispersion observer is just as excited as the dispersion source with dispersion photons. Similar to dispersion, gravity also represents the exchange of two photons, but now with the CMB creation wrapped photons, not local photons. As a result, gravity is then just the ultimate dipole-induced-dipole variant of dispersion.
Thus a gravity bond energy is GmH2/r, which of course in aethertime is just scaled charge energy as q2 c2 1e-7 tB / Tu / r, which is charge force scaled by the dimensionless size of the universe, tB / Tu , the ratio of the Bohr orbit period to the orbit period of the universe. Note that the hydrogen atom mass no longer appears in the gravity energy of two hydrogens and instead, the gravity of two hydrogens is just the square of the product of charge and the speed of light. In other words, the amplitude of the dipole energy qc is what determines both charge and gravity forces as well as the in between dispersion force.

The dispersion radius of two hydrogens is where dispersion and gravity energies are equal and is at rd = (3/4 EH a2 / G / mH2)1/5 = 70 nm, where a = 3peorB3 is the hydrogen atom polarizability. Two hydrogens in circular orbits do not radiate quadrupole gravity waves and so there needs to be other particle exchanges to further cool and condense atomic into solid molecular hydrogen. The gravity biphoton condensation of atomic hydrogen into stars is of course the basis of the single photon emission that lights the universe.

The dispersion limit is then where the dispersion radius exceeds the product of body radii as rd > 1.44e5 (r1r2)3/5 which is roughly 144,000 times the body radius product to the 3/5th power. The moon Io of Jupiter has just 3e-5 of its gravity energy as dispersion while earth's moon has just 1.6e-4 of its gravity as dispersion energy. Dispersion energy is a small but significant part of most gravity orbits and the heat generated by dispersion energy is part of the radiant flux from each orbiting body as well.