Search This Blog

Friday, August 2, 2019

The Wonder and Glory of the Pulsed Universe

It is things that happen that make up the universe and most of all that means that it is the universe most of all that just happens. The very slow matter action of the universe pulse is a very slow action that happens very slowly. Although the very fast atom matter actions are what make up the universe, all very fast atom matter actions are still subject to very slow universe matter action as well. In effect, there are two dimensions of time and three dimensions of space that all emerge from matter action.

Time and space have meaning for everywhere in the universe of atoms except at certain boundaries called event horizons. The matter accretions known as black holes, exist beyond the time and space of the universe of atoms since there are no longer any atom matter actions for a black hole. Instead, each black hole exists as only a mass, a quantum phase, and a surface or event horizon and yet black holes are still subject to the overarching universe matter action. Thus the very slow change of the universe pulse still has meaning for a black hole very slow change. Black hole decay along with the universe decay then represents the destiny of all atom matter action as the universe matter-action pulse decays. The eventual decay of the universe into a single black hole outcome becomes the precursor to an expanding antiverse outcome.

The eventual universe precursor is then in a superposition with an antiverse outcome until a dephasing occurs and the antiverse expansion then begins from the black hole precursor. This antiverse expansion of antimatter the becomes the eventual precursor to another shrinking matter universe like the universe that we find ourselves inside of today.



We know that we are in a shrinking universe of growing force because of the many different measurements of matter decay along with force growth. The kilogram standard has decayed over 130 yrs, the earth day has decayed over 50 years, atomic clocks all dephase at characteristic rates per atom, and pulsars all show a limiting frequency decay.

We know that we are in a growing force universe because the Hubble galaxy red shifts occur despite the universe of shrinking matter. The further wonder is that all of science is completely convinced that the universe expands and does not shrink at all. Relativistic gravity is simply a manifestation of a shrinking universe of quantum matter.

The universe matter pulse complements the photon pulses that bind matter and result in quantum gravity as well. An exchange spin = 1 photon binds each electron and proton and has an emitted spin = 1 photon with complementary phase. These spin = 1 phase complements result in a spin = 2 biphoton or graviton whose exchange with other matter biphotons is quantum gravity. Since gravity biphoton exchange does not depend on quantum phase, gravity is always attractive and therefore unlike photon exchange, which depends on quantum phase.






Monday, July 29, 2019

ABC Time


This is a great review of the classical meanings of time given by many over the years. I am especially fond of McTaggart’s A, B, and C times, but have always been intrigued by his conclusion there was no coherent single answer. That always seemed odd...a philosopher without coherence?

Farr also mentions some physics, but he only just touches on relativity and quantum mechanics and he does not say anything about quantum phase at all. Farr states that the equations of relativity and quantum physics are fully reversible...but that is not true at all. Relativity represents all matter actions on irreversible determinate geodesics paths and those actions are not reversible in any sense and so there is never any causal confusion with relativity. In fact, the irreversible determinate paths of relativity are absolutely predictable to an unlimited classical precision. All precursors are prior to their outcomes and that is local cause and effect.


It is quantum action that shows a causal confusion of time in quantum reversibility. The quantum nature of matter action shows that quantum phase is very important but quantum phase does not seem to play any role in gravity relativity. Reconciling microscopic quantum phase with the macroscopic irreversible reality of gravity relativity provides a nice understanding of time as emergent, not axiomatic.

Time is not an infinitely divisible and continuous flow of gravity relativity, rather the notion of time emerges from a very large number of discrete and reversible quantum matter actions or changes. All quantum action is reversible because even though a precursor occurs for every outcome, the precursor and outcome exist together as a superposition for some very brief dephasing time. Therefore, one dimension of time emerges from a characteristic dephasing time that comes from the very slow and inexorable change in the universe. A very precise measure of dephasing is the time it takes for two atomic clocks to dephase from each other.

Once two quantum clocks dephase, the outcome then becomes part of our irreversible macroscopic gravity relativity and given a very large number of outcomes, the dephasing ensemble is effectively irreversible. However, the inescapable quantum result is even though all outcomes have precursors, not all outcomes have precisely knowable precursors. In the quantum world there are just more likely and never certain precursors and so there is a discrete quantum limit to the precision you can know about an outcome.

The second time dimension is in the very rapid ticks of atomic clocks, which all run in the same very slow direction of universe dephasing, the first time dimension. Despite the microscopic reversibility of each pulse of light in an atomic clock, the macroscopic nature of an atomic clock results in dephasing and therefore, from dephasing emerges an irreversible flow of events.

Note that time only has two dimensions because there are two kinds of things that happen; slow universe changes and fast atom changes. First of all, the universe changes very slowly as a single gravity event and second, atom changes are very fast and involve a very large number of quantum events. The two dimensions of time simply emerge from the two very different kinds of things that happen in the universe and therefore the flow of time does not exist otherwise....I still like McTaggart’s times though...

Friday, July 26, 2019

Interpreting Irrational Quantum

The universe changes by quantum matter action and so quantum phase, matter, and action are all just the way the universe is. Quantum phase, matter, and action and are therefore all very useful archetypes for predicting outcomes from precursors. There really is no need to interpret the nature of quantum phase just as there is no need to interpret the natures of quantum matter or action. While people do not often ask about the interpretation of the very intuitive and causal realities of matter and action, people do still ask about the interpretation of the somewhat less intuitive and irrational quantum phase. People ask, how can a single particle exist in two different places? Are there particles or are there waves? In particular, people ask how is the counter intuitive quantum phase surreality consistent with the more intuitive macroscopic reality of relativistic gravity matter action like cannonballs.

All matter vibrates or oscillates and so there are no particles that are completely at rest. Moreover, any two particles or bodies can be in phase or out of phase or anywhere in between. Two particles that are in phase can bond in a collision by emitting light or another particle and two particles that are out of phase will scatter and not bond. A further unusual quantum feature is that a particle affects itself and so a particle can be in or out of phase with itself as well as with other particles.

Of course, two people who like each other are also in phase and will bond while two people who do not like each other are out of phase and will conflict and therefore not bond. A single person can also like or not like themselves as well. Even though we don’t normally associate the intuitive feelings of bonding among people with quantum phase correlation, quantum phase bonding is a perfect analog for human bonding. Quantum phase is also a perfect analog for how people feel about themselves as well. Of course, all of reality is made up of quantum phase bonds as well as conflicts and there also does seem to be phase interference, entanglement, and superposition in relations among people.

Quantum phase bonds and conflicts are a common part of our macroscopic reality and the pure quantum phase of light pulses make up an irrational phase exchange bonds of matter. Quantum phase is also an important part of the universe matter pulse, but macroscopic gravity relativity on the cosmic scale does not include the bonding of quantum phase even though microscopic charge certainly does. Things happen when one discrete quantum state transitions to another discrete quantum state in a fully reversible process known as wavefunction collapse. Quantum reversibility creates an irrational causal confusion for time direction that irreversible macroscopic reality does not have. Macroscopic things always happen somehow irreversibly and seemingly without regard to the irrational quantum phase and in fact our notion of time emerges from the irreversible entropy that results from large numbers of matter actions.

The key to the irreversible nature of macroscopic reality is with the decoherence of any quantum phase entanglement. Phase decoherence collapses large numbers of reversible wavefunction superpositions into the effectively irreversible entropy of a large causal set of matter actions. The electron motion in a hydrogen atom is the result of a charge bond with negligible gravity. Nevertheless, two hydrogen atoms at 70 nm separation have their charge dipole-induced-dipole or dispersive attraction equal to their gravity attraction. At 70 nm separation, gravity and charge fluctuations are equal as a characteristic and continuous perturbation in both time and space.

Each hydrogen atom has a quantum phase correlated with the photon emission that formed that hydrogen atom. This means that the two (or more) photons of these two hydrogen atoms have persistent dispersive attractions that we call gravity. The phase correlation of this biphoton means that there will be slight differences in the gravities of atom particles due to each atom’s history. But the averaged gravity of large bodies of matter created together will be very similar.

The universe pulse gives a characteristic quantum gravity noise known as continuous spontaneous localization (CSL), which collapses wavefunctions and makes our macroscopic reality real by dephasing matter actions. Normally, gravity is too small to affect charge at a microscopic scale, but the very slow universe pulse fluctuation frequency of 0.255 ppb/yr at 70 nm is sufficient as the plot below shows.

This plot also shows that it will take another 2-3 orders of magnitude sensitivity with gravity wave detectors to finally confirm the mattertime decay of our universe pulse. However, mattertime decay does show up in a large number of other measurements, but those measurements are invariably complicated by classical noise. Note that it is the very slow quantum fluctuations in the universe pulse, 0.26 ppb/yr, that collapse wavefunctions at 70 nm, but the dephasing of quantum wavefunction collapse occurs everywhere in the universe.

Matter decay and force growth are everywhere and in everything that happens. Here is a plot of the mattertime decay versus frequency for a large number of periodic events. Pulsars are rotating neutron stars that show very characteristic pulsing as well as decay and pulsar decay follows the mattertime decay line. However, pulsars also decay by radiation of light and gravity and so this complicates the interpretation as a universal decay.
The Allan deviation of atomic clock synchronisation also follows the mattertime decay line as well as the earth spin decay and the moon-earth distance, as well as the approach of Andromeda galaxy. Of course, this could all be just a coincidence, but it does mean that the electron charge radius, re, does decay and therefore the electron spin period as well.

The next plot shows the decay of the kilogram standard, IPK, over 130 yrs relative to a number of secondary standards and the IPK decay is 0.51 ppb/yr or twice the mattertime decay. Thus far the IPK decay has no explanation and in mattertime, the frequent careful cleaning of the secondary standards actually adds mass to keep many of the secondary standards constant over time. The IPK cleaning only happened each of the three times it was measured.
The decay of earth’s day in the next plot includes a very much greater annual variation from 1963 to 2015. There are large annual fluctuations of several ms as well as a long term decay that is consistent with 0.26 ppb/yr. However, most of the variations are due to perturbations of the moon and planets along with tidal heating of earth’s oceans also occurs and this complicates the interpretation.
Thus the quantum dephasing decay of the universe pulse makes our macroscopic reality real and yet still consistent with our surreal quantum time confusion. Quantum phase does have macroscopic effects as light polarization and interference, but very large bodies have all dephased and therefore do not show quantum phase effects.

The universe pulse is after all the pilot wave that guides all light and matter action. Pilot wave or de Broglie-Bohm theory is a deterministic quantum mechanics that creates hidden variables as pilot waves to guide all matter particles, not wavefunctions. However, the universe pulse as a pilot wave and so does not introduce any hidden variables since that is just the way the universe is. Thus, the relativistic gravity Hamilton-Jacobi equation becomes the basic equation of motion as a quadratic and relativistic form of the quantum Schrödinger equation. The Klein-Gordon equation is also a quadratic and relativistic form of the Schrödinger equation and is the basis for quantum field theory and the standard model of particle physics.