Search This Blog

Monday, May 24, 2021

Quantum Spin

The Stern-Gerlach measurement of silver atoms in 1922 first showed the unexpected up/down magnetism of neutral silver and other atoms that have a single, unpaired electron. The up/down magnetism of quantum electron spin is the basis of the quantum measurement problem in philosophy. Although the spin showed a 50:50 up:down magnetism, the measurement did not indicate that the original neutral atom was magnetized at all. In fact, the measurement itself seems to have affected the outcome of the neutral atom spin magnetism.

Although it was not clear why neutral atoms showed any magnetism at all in the Stern-Gerlach experiment, just two years later in 1924 Pauli proposed that electrons with complementary spin can occupy the same space and time in a superposition that then has no spin magnetism. The math behind quantum spin became more apparent when Schrödinger discovered in 1926 the quantum mechanics equation that, for the first time, explained the spectrum of atomic hydrogen. It then became clear that the spin magnetism of electrons manifests itself in the fine structure of atomic hydrogen and spin magnetism of protons in the hyperfine structure of atomic hydrogen.

The notion of quantum spin was first thought to emerge from a rotating charged particle rotation like  like an electron, since charged spheres were well know to induce classical magnetism. However, given the electron charge radius, the rotation velocity would be c/alpha, some 137 times the speed of light. Nevertheless, the notion of a spinning charge continues today as a simple explanation for quantum spin.

However, it is the fundamental quantum oscillations of matter and charge that explains quantum spin. Quantum oscillation of the electron oscillating electric field that then results in spin magnetism perpendicular to the electric field oscillation. Thus, instead of charge rotation, quantum spin is due to the perpetual of quantum wavefunction oscillations that has no meaning for a classical particle of static mass and charge.

When an electric field oscillates around an electron plane, there are two possible spin states as up for left or down for right as the figure shows. In addition to charge oscillation, electron mass also oscillates and so the electron mass amplitude oscillates much more slowly than electron charge amplitude as the figure shows.


This electric field oscillation is bound to the electron and is in contrast to the electric field oscillation of the unbound neutral photon in the next figure. The oscillating electric field of the photon also induces a perpendicular oscillating magnetic field for both the unbound photon just like it does for the bound electron. Quantum charge oscillation is then the origin of magnetic spin.

All quantum matter wavefunctions oscillate in matter amplitude and there is a perpendicular action amplitude oscillation as well as the next figure shows. All quantum particles also interact with themselves and quantum self energy plays an important role in quantum spin.
The only fundamental particle in the matter-action universe is aether and so aether matter-action makes up all matter particles. All change is a result of the gain or loss of aether and the fundamental decay of aether is the source of both quantum charge and quantum gravity.

Quantum charge bonds by the exchange of a spin = 1 photon while quantum gravity bonds by the exchange of a spin = 2 complementary biphoton. The causal set plot shows the CMB precursor aether that ends up as quarks and neutrons that decay to the electrons and protons of neutral hydrogen.


The Rydberg biphoton is the CMB emitted photon entangled with the hydrogen binding exchange photon. The biphoton provides a very small additional binding as compared with charge, but is significant for large neutral matter accretions like stars and planets.

The quantum gravity Hasse causal set diagram for the universe shows how space, time, and gravity all emerge from the sprinkling of random photon paths over 4𝜃 steradians of quantum phase.


Thursday, May 13, 2021

No Space and No Time...How the Universe Really Works

No Space and No Time

How the Universe Really Works

Stephen F. Agnew, Ph.D.


This book describes a new reality of discrete aether decay and with the polar opposites of the chaos of discrete quantum aether versus the order of discrete quantum action. This is a really different reality from what most people and indeed from what mainstream science thinks. The universe of discrete quantum aether decay begins with the chaos of matter and evolves according to the order of action.

Instead of the notion of a big bang expanding with a continuous unidirectional time into a spacetime universe, the matter-action creation is of a large amount of very cold aether. Instead of the spacetime universe being just a little bit of matter and energy in a largely empty and continuous universe of space, the discrete aether universe is filled with the action of aether, which is both light and matter.

My notions of discrete aether began in 2006 and entangled my path with the very different paths of cosmology and grand unification. Discrete aether also includes a discussion of consciousness, neo-alchemy, and the archetypes of ancient religions. Not only are quantum charge and quantum gravity bonds important for reality, quantum free choice drives the social bonds and conflicts of civilization.


There are 48 fantastic full color as well as 15 B/W figures and plots in 324 pp as both paperback and Kindle eBook...




Wednesday, April 21, 2021

Electrons, Photons, Quarks, and Neutrinos

A theory of everything like matter action is a simple set of particles and exchanges and so a TOE must first define the matter and action of its particles. The matter-action universe has only one fundamental particle, aether, but aether manifests as four really illustrative matter-action particles: electrons, photons, quarks, and neutrinos. Atoms make up the matter of the universe as electrons, protons, and neutrons while photons and neutrinos fill the space in between matter accretions. 

Quark pairs are what make up protons and neutrons and so the electrons and quarks are what make up the atomic matter of the universe. Thus the particles of electrons and quarks make up matter with the particles of photons and neutrinos make up the action or forces that bond electrons and quarks into matter.



An electron is a quantum oscillation of both matter and charge and so the electron comes into and goes out of existence with a frequency 𝜈m. However, an electron is also quantum oscillation of charge with a frequency 𝜈e, and perpendicular to that charge oscillation is a quantum oscillation of magnetism called spin.


Electron properties are a result of both matter and charge oscillations with charge oscillation about 18,700 times that of mass oscillation. This means that the electron charge oscillation is quite independent of its matter oscillation and therefore that electron spin magnetism, which comes from charge motion, is also quite independent from its matter oscillation. Thus, spin dimensions are usually separated out in any equation of motion in the four dimensions of space and time.

Another electron property is that of gravity due to its mass and yet there is no sense to electron matter oscillation or electron amplitude and phase in gravity relativity. Mainstream Science gravity relativity is a static distortion of space and time due to a static mass and so gravity relativity does not oscillate at all. However, space and time emerge from the matter-action oscillation of electron charge amplitude so space and time both do oscillate with electron charge oscillation. Note that there is no such time oscillation of the Ricci tensor of gravity relativity.


The quantum oscillation of matter is not consistent with static gravity relativity since quantum gravity  oscillates with phase and amplitude as well as having a quantum average mass. Gravity waves exist in space and time with phase and amplitude, but are very small except near black holes. However, a hydrogen atom results from the oscillating bond of an electron to a proton, all three with oscillating mass and charge. However, the proton and electron charge oscillations are of the same frequency while their matter oscillations are 1833 times different. The hydrogen atom forms from the emission of a Rydberg photon mass at 4.85e-35 kg that is entangled with the Rydberg photon of the same mass exchange that bonds the electron and proton.

This Rydberg biphoton mass entanglement represents the quadrupole dispersive force of attraction that is quantum gravity and so quantum gravity does oscillate at the frequency of quantum charge. All neutral matter gravity bonds by emission photons entangled with bonding photons and so all neutral matter shows the dispersive attraction that is gravity. Since space and time emerge from matter action, emergent space and time both show distortions of quadrupole dispersive gravity. While charge bonds are single photon exchanges, gravity bonds are biphoton exchanges. Since mass increases with the energy of motion, the fields that emerge are Lorentz invariant.

Unlike the dipole oscillations of single photon exchange bonds, which can either attract or repel, the ever so much weaker biphoton exchange bonds of gravity are always attractive since they are quadrupole oscillation bonds. Quantum gravity bonds involve the correlated exchange of Rydberg binding photons as well as exchange of Rydberg emitted photons. Of course, once two atoms get close enough, charge dispersion dominates over gravity and charge dispersion involves single photon exchange. Gravity is important once an object is massive enough to generate a density of states that allows gravity quadrupole biphoton exchange to act over large separations. Once an atom contacts the large body, quantum charge single photon exchange once again dominates.

Matter action then describes both charge and gravity with the exchange of quantum photons as quantum charge bond, quantum gravity bond, and social bond outcomes as well as the complementary scattering and conflict outcomes. Quarks and neutrinos are then just manifestations of the same matter-action exchange principle that emerges from a more fundamental principle of quantum aether exchange. The unbreakable gluon exchange bond of two quarks somehow reflects the nature of the whole universe. The odd neutrality of neutrinos that do not interact very much with matter and yet neutrino shine is present everywhere.

Quark pairs are the basic building block of protons and neutrons and there is no force in the universe that can break a quark pair bond. While the proton lifetime is the same as the universe, the neutron only lives about 15 minutes and decomposes into an electron, proton, and neutrino. Therefore, the neutrino is the basic matter-action exchange that bonds a proton to an electron. 

We exist in a background of neutrino shine from stars along with CMB photon and neutrino shine from our universe creation. In a very real sense, both neutrino shine and CMB photon shine represent the basic aether exchange that bonds the matter-action universe. The basic principle of quantum aether resonance and exchange is then the single fundamental particle that makes up all matter as well as all action as aether exchange.

The resonance that drives the universe is the Rydberg mass resonance of the hydrogen atom, mR = 4.85e-35 kg with a 6.59e16 Hz resonance, which also sets the proton to electron mass ratio, 1833. The Higgs mass resonance at 125.1 GeV/c2, 2.23e-25 kg, and 3.03e25 Hz sets the proton mass as a resonance of three quarks, that comes from the Higg’s boson mass equal to the proton mass divided by the fine-structure constant plus the helium atom, mp / α + 4He.

The photon is an electromagnetic pulse in time and frequency moving at the speed of light, c, with average frequency, no, and polarization. A photon is a superposition of two orthogonal polarizations, which are correlated for a polarized photon or uncorrelated for an unpolarized photon. Photon exchange is the basic glue that binds all matter and so a matter A photon emission origin and a matter B photon absorption destiny B binds matter A and B.