Search This Blog

Sunday, April 26, 2015

Deflection of Starlight by the Sun

The first verification of Einstein’s relativity came with the observation by Eddington during an eclipse in 1919 of starlight deflection passing close to the sun. Einstein had predicted in 1915 that the sun's gravity would deflect star light, but it actually took many more years to really put this issue to bed. This is because there are two separate but equal terms for that deflection and it even took Einstein time to realize that this was so.

The first term is due to the mass-energy equivalence (MEE) of photon energy and is really then just the Newton deviation of classical gravity of an object trajectory close to a massive body is shown in Fig. 1 and is based on just gravity and mass equivalent momentum. In other words, there is both a classical Newtonian deflection of star light as well as relativity's deflection of light by gravity. The real question is why relativity predicts twice the deflection as predicted based solely on Newton's gravity, but including the mass equivalent energy of light.

And of course, since the energy of a photon is equivalent to a rest mass, this is the Newton deviation for a photon particle as mass or momentum as well. These units are all in radians, Eqs. 1 and 2, where 2π radians equals 360°, [1], [2].

For relativity, though, there is an additional deflection due to the gravity time delay and spatial distortion and a progressive gravitational redshift of light. That is, the deflection of light due to an extra gravity time delay exactly doubles the deflection due to gravity as MEE, Eq. 3.

The fact that these two effects, gravity MEE and time delay, are equivalent but distinct was not immediately apparent to Einstein and others in 1915, but eventually Einstein recognized that his relativistic deflection was indeed twice the Newton gravity deflection for light in a vacuum. So the total deflection is the sum of both Newton and redshift contributions as Eq. 4:

The original Eddington results from 1919 showed a deflection of the starlight by the sun, but those results had a fairly large uncertainty as shown in Fig. 2 and so really did not validate Einstein's Eq. 4 over Newton's Eq. 2. Since then, many different kinds of measurements have indeed verified the extra gravity deflection of light predicted by Einstein. Figure 2 shows starlight deflection data from the 1976 eclipse along with the Einstein and Newton predictions along with the range of data from Eddington in 1919. Although there is substantial scatter in the measured deflections, this paper confirmed Einstein’s prediction over Newton's with a 95% CI.

The much more precise time delays of quasar sources across the sky by VLBI radiotelescopes measures time delays between stations across the width of the earth, ~6,000 miles, to derive the same light deflection for these radiowave quasars. A more generic expression that is valid for objects across the entire sky is Eq. 5 as

where the angle, theta, is the elongation angle between the sun and the source and g = 1 for GR and g = 0 for Newton.

Travel through a gravity gradient in effect delays both photons of light as well as bodies of matter and from the precise measurement of that time delay emerges the deflection of light in space. The measurement of starlight deflections during a 1976 solar eclipse shows a dataset that is consistent with Einstein gamma = 1 and not just Newton gamma = 0. However, the scatter in the starlight deflection data in Fig. 2 shows how difficult this measurement really is.

Figure 2 also shows the three of the five much more precise VLBI results reported in a 2015 paper for a series of VLBI measurements of quasar time delays from 1991-2001 that also followed the expectations of Einstein’s relativity and gamma = 2. Unlike the measurements that depend on an eclipse, measured VLBI time delays occur throughout the year and over ten years and showed circular paths for each of five different quasar radio source deflections. One example is the blazar 1606+106 deflections in Figs. 3 and 4.

This data revealed very precise measurements of the deflection of quasar radio signals over the course of ten years for quasars that were located at the minimum angle 30.9° from the sun, a much greater elongation angle than any previous report. Once again, these datasets support the deflection predicted by Einstein’s relativity and gamma = 1 over that of the mass-energy equivalence of light and gamma = 0.

Instead of measuring starlight deflection only during an eclipse, the VLBI measures radio source deflection over an entire year for all of ten years. Each quasar radio source reveals a circular pattern that shows the same deflection observed with the eclipse datasets. Figures 3 and 4 show the deflections of blazar 1606+106 that is located 31° or 124 solar radii from the ecliptic and would be the elongation at the maximum deflection.

The much more precise VLBI data is also consistent with the nature of relativity to an extent that seems quite convincing. However, there are still other explanations besides Einstein’s relativity for the deflections of starlight and radio sources that are fully consistent with these measurements. These results all derive from approximations that use only the leading terms of various series expansions to simplify the complex tensor algebra of the relativistic equations. As a result, these same approximations are actually valid for any number of alternative scenarios as long as they all incorporate the same basic principle of mass-energy equivalence (MEE), i.e., E = mc2

There are some big flaws in Einstein’s general relativity, but starlight deflection by gravity is not one of them. In fact, far from validating GR, starlight deflection is consistent with any number of other theories as long as those theories incorporate gravity MEE and therefore time delay. For example, MEE is a founding principle of discrete aether and so star light deflection by the sun is not so much of a verification of GR as it is of gravity MEE and time delay.

A spherical gradient index lens, for example, deflects starlight in the same way as a gravity body like the sun. For a gravity lens, the starlight first redshifts in its approach and then blueshifts as it leaves the gravity field deflected as shown in Figs. 1 and 5. Similarly, for a gradient index lens, the starlight redshifts and delays as it travels the index gradient and then starlight blueshifts as leaves the index gradient. Similarly, a body of mass accelerates and gains energy upon entering a gravity gradient, then decelerates and loses energy and is also delayed upon traveling the same gravity gradient, but only one-half as much delay as the starlight.

The dielectric effect delays light that travels through a dielectric medium since light slows down in a medium with an index of refraction greater than vacuum. In a fully consistent manner, a gravity field slows light and therefore results in the same index gradient, which is an alternative explanation from relativity. Whereas Einstein supposed a distorted 4D spacetime where light followed geodesic paths (shown in Fig. 5), light does not change velocity along that spacetime geodesic. Instead, a gravity field dilates time and space by the same Lorentz factor in a gravity field, which maintains a constant speed of light in the moving frame.

In the moving frame, there is no change in the speed of light because both distance and time are dilated by the same MEE factor and so in GR, there is no way for the traveler to know about their motion without communication with the rest frame. However, in the rest frame, the deflection and delay of light in the moving frame is very apparent. The apparent speed of light for the photon does in fact slow down since there is a time delay just as there is a time delay for the matter body as well.

A positive gradient quadrupole gravity wave, shown in Fig. 5, is due to the exchange of image dipoles with the photon dipole and this is a dielectric effect. In effect, the photon travels through the gravity quadrupole field and that same quadrupole gravity field exchanges dipole pairs between the two matter object. It is the exchange of quadrupole photons that results in an increase in that object’s inertial mass and velocity.

A quadrupole gravity exchange with a photon of light results in an apparent red shift or mass loss followed by blue shift and mass gain and an overall photon delay even while the same quadrupole gravity exchange with a matter object first increases the decreases object mass and ends up with only one half of the time delay that a photon experiences.

A photon in a dielectric gradient generates an image dipole that results in an attractive force and a red shift of its frequency. In effect, the quadrupole gravity field derives from photon emissions of matter particles that end up folding back onto the particles with the folding time of the universe. The time quadrupole operator, Fig. 6, is the basic scaling for gravity force from dipole time operator of charge force.

Quadrupole photon gravity is a quantum gravity and is a part of matter time, where all force derives from the same fundamental decay of the universe. Photon delay in a gravity field is twice the delay of an MEE matter object due to the fact that a photon undergoes an additional dielectric delay that is equivalent to its MEE delay.

It is from these time delays that our notion of space emerges from the action of matter. Therefore, the fundamental flaw in Einstein's GR is that a deterministic geodesic path like Fig. 5 exists. Although this is an excellent approximation, that path in a quantum gravity actually emerges from the exchange of biphotons. Similar to the exchange of virtual photon dipoles that represents the basic nature of quantum charge, it is the exchange of virtual biphoton quadrupoles that represents the basic nature of quantum gravity.

The factor of two for relativity's delay of light is actually the same factor of two that shows up in the gyromagnetic precession frequency between relativity and classical frequencies of rotating charge. This means that the g-factor that relates quantum to classical charge is the same g-factor that relates quantum and classical gravity, finally resolve the discrepancies between gravity and charge.

Eddington, Arthur Stanley (1919). “The Total Eclipse of 1919 May 29 and the Influence of Gravitation on Light.” The Observatory 42, 119-122.

Sunday, February 15, 2015

Aethertime Cosmology

Instead of a big bang, the discrete matter and action universe decoheres from its precursor antiverse expansion and the decoherence rate is what drives both charge and gravity forces in the shrinking or collapsing epoch of decoherence. The current decoherence rate is 0.255 ppb/yr, which is about 9.6% per Byr matter decay and force growth and means that the current universe is only about 81% of the mass of when decoherence began at creation but the speed of light at creation was zero. The ratio of the time size of the universe to the time size of the hydrogen atom represents the ratio of charge to gravity forces and force also evolves along with universe decoherence.
Instead of the Hubble constant deriving universe expansion from galaxy red shifts, the red shifts of the Hubble constant just define the size of the universe given the speed of light in this epoch. Equivalently, Hubble is just the product of the current rate of the universe decoherence and the current speed of light, H = αdot c. The aethertime Hubble constant is then purely a classical constant and simply depends on constants that are the ratio of gravity and charge forces, H = mH2G / (q2 rB 1e-7). This means that the size of the universe scales from the size the hydrogen atom and the ratio of gravity and charge forces.

And what do you know...the universe is shrinking...universe is slowly dying reported at 50% over 2 Byr. The paper Galaxy and Mass Low z shows a decay of three times,  {2.25, 1.50, 0.75} Byrs as {2.5, 2.25, 1.5} e35 W/Mpc3 at h70. Since the current universe is about 0.32e35 W/Mpc3, which is the Virgo cluster luminosity over its 0.11 Blyr time size.

So the very latest decoherence would show the accelerating collapse of 6.3e35 W/Mpc3/Byr, not just 0.63e35, which is 50% over 2 Byrs. The dephasing of discrete aether shows this decoherence is actually due to universe shrinkage and not expansion, but the time delays are not the same between expanding and shrinking universes. It is fun to suppose that this measure of universe decay is consistent with an aether decoherence that drives all force. The universe actually decoheres at -9.6%/Byr, but the universe decoherence presumes a constant c, which doubles the apparent matter decay to -19%/Byr.

Sunday, November 16, 2014

In Defense of Time

There is a very strong ongoing discourse about the nature of time and whole books have been written about the illusion of time, both for time as an illusion [The Illusion of Time, Tolle 2008, The Time Illusion, Wright 2012, A Question of Time: The Ultimate Paradox, Sci.Amer. 2012, The Elegant Universe, Greene 2010] and against time as an illusion [Time Reborn, Smolin 2012, What Makes Time Special?, Callender, 2017].

Although there is an illusion about reality, that illusion is not about time. The illusion that we have about reality is in how we discover continuous space and motion, not in the discrete time delays of objects and action. We first discover space as the lonely dark empty nothing that explains why we no longer see an object that has moved behind another object. We learn about space by about the age of two and then we take space and motion for granted as a basic belief that anchors consciousness. We do not really often dwell on the irony of accepting the nothingness of empty space as a something that makes up most of the universe. We simply realize that objects continue to exist even when we do not sense them and the motion of objects in that nothing of empty space simply hides one object behind other objects.

While there  are many, many more books and articles written about the illusion of space than the illusion of time, somehow we just don't get it. The vast majority of spatial illusions result from a confusion that we have with the time delays that we sense for objects and their backgrounds, what we call spatial depth dimension in an otherwise two-dimensional image. We know that with each of our two eyes we only perceive a two dimensional reality of object time delays and therefore the third dimension emerges as depth only by perspective. Each of our two eyes sees a slightly different two dimensional space from just the one dimension of time delay between objects.

Our brain largely organizes the world with the dual concepts of continuous space and motion and uses space and motion to keep track of where objects are and to help predict where objects are going. We imagine ourselves in a rest frame that does is not moving and that a reality exists for both moving objects outside of our brain and objects at rest with us in space. We seem to have a no trouble imagining space as a lonely empty nothing and it is especially ironic that we infer space from the continuum of sensation of a background of objects and the nothing of space emerges from what we do not see or sense. The object that we imagine as empty space is everywhere the same and in some sense immobile and fixed and it is the lack of sensation of any object that we feel is the lonely empty nothing of space that then defines most of the universe that we imagine.

But continuous space and time do not describe all objects in the universe for mainstream science. There are objects called black holes and very small objects at the Planck dimension and neither of these two objects exist in continuous space and time. These objects do exist in the reality of time delay and discrete matter and the Mollweide projection maps the two-dimensional sphere of the sky into the ellipse shown below. Likewise, we can map the two dimensions of time onto a Mollweide ellipse and show how the universe projects back onto itself in time.

There are always two different observers for every motion or action; one observer, called the rest frame, is not moving and is usually left behind as a result of motion of a second observer that is moving with some action in the moving frame. In general relativity, GR, each of the rest and moving frames have their own clocks and those different clocks keep different time but still provide a single objective and proper time that completely defines that action. Proper time represents the norm of the displacement of a moving object, i.e. what we really experience, in the four dimensional spacetime of GR.

Relativity imagines a proper time that is a continuous spatial dimension and in effect does away with time by making it just a fourth dimension of 4D spacetime. The motion of an object in spacetime is equivalent to time, but then there are motions within that object that must also be equivalent to time, and further motions within those motions as well that also affect time. These recursions of embedded motions and times are an integral part of the recursion of relativity but quantum mechanics handles embedded time somewhat differently than GR.

Quantum action always begins with a discrete excitation from a ground state of one matter wave as a source or origin. That source bonds a pair of emanating matter waves of two objects into coherent relative futures. The excitation evolves a ground state into an excited state that is a pair of complementary and coherent matter waves, each with complementary and coherent clocks and directions. In classical ballistics, every action results in a reaction or recoil and a bullet firing results in a recoil of the gun in the opposite direction. Likewise in quantum action, every excitation has two coherent matter wave complements as well.

In GR, the rest and moving frame clocks represent a proper time, the time that we experience as the present moment, and the clock amplitudes and phases of the two frames do not affect the path of the object and essentially remain coherent for all time. In quantum action,  the rest and moving frame clocks begin together and are coherent for only some characteristic time. As long as two clocks remain coherent, they may interfere with each other and therefore affect each other's path. The quantum rest and moving clocks come into existence after some excitation of one or two sources and quantum clocks merge with discrete jumps or quanta into the same proper time norm that GR reports.

We therefore experience the same proper time in both quantum and GR times, and we sense the same matter changes of an object and the same motions emerge along with space as a result of sensation. However, there is an inherent decoherence rate for the two quantum clocks of a rest and moving frame that not only limits what we can know about their paths, that decoherence rate is what determines both gravity and charge forces.

What we sense about an object involves exchanges of matter amplitude and phase with the object matter waves and those matter and phase exchanges result in a complex neural packet of aware matter that we call a moment of thought. From all of these complex relations among impulses, the relative simplicity of objects at a particular moment emerges as the three dimensions of space in our brain.

What we actually sense about an object is, however, quite a complex set of both coherent and incoherent matter waves that represents a relational reality that comprises both us and the object. While what we imagine about an object represents a very much simpler Cartesian reality of time and objects in a mostly empty space, the relational reality of an object is ever so much more complex. This fundamental dualism is a prominent feature of all models of reality and yet matter time necessarily uses time and matter as primal conjugates and not the space and momentum of mainstream science. Since we do not actually sense the nothing of space and motion, we can deduce and can and do imagine the nothing of space to be just about anything that space needs to be.

The fact that there are two distinct clocks for each GR action, a rest clock and a moving clock, is also true for quantum action. However, a quantum action begins in the past with either one or two sources of matter waves that may or may not be coherent. Quantum clocks can be entangled and interfere with each other, which just means that the excited state of a source matter wave pair can remain coherent for a very long time and so can result in correlated and seemingly nonlocal actions. This seeming violation of GR's local causal principle of determinism is simply a characteristic of a quantum time and does not actually violate any quantum causal principle.

After all, while quantum clocks show interference effects as long as they are coherent, GR clocks are in a sense always coherent and phase has no meaning. Since the two clocks of GR do not interfere with each other as coherent amplitude and phase, the rest and moving clocks of GR merge smoothly into the proper time norm of experience. There is no role for the phase of coherent clocks in GR and so there are no interference effects in GR either.

In contrast to the importance of clock time in GR, time as an independent dimension seems to go away in the four-space of GR since there is no phase and no decoherence rate. There is only one possible future in GR and so GR time has no phase and is simply a dimension of displacement that is equivalent to space. Yet quantum atomic time is not only a progress variable, quantum decoherence time is also an integral part of reality and as a result, there is no quantum time operator like there is a quantum mass operator. Even though time is a prominent feature of general relativity and the mass-energy equivalence principle, E = mc2, quantum's adoption of mass-energy equivalence still means there is no expectation value for quantum time. While momentum and space have long had a warm and cozy quantum relationship as conjugates and are nicely complementary, mass and time are not quantum complements of each other like momentum and space for mainstream science.

Since there is not an expectation value for time or duration, this is known as the quantum time problem and this is what leads many to suggest that quantum time is an illusion. These arguments rest on the proposition that there is quantum space and motion as our 
reality, but not matter and time. Quantum energy simply exists like time as a progress variable and is always a result of motion, not the source of motion.

However, matter time plays a role reversal and proffers that instead of space and motion being the reality and time a consequence of motion, quantum matter and time are the reality and space and motion emerge as a mere consequence of the action of matter and time. Space is then just a convenient progress variable and the illusion of space is what allows us to keep track of objects in time. It is matter and time that complement each other and not momentum and space. Key in matter time is the matter-energy equivalence principle (MEE) and Lorentz invariance and the rigor of certain bounding assumptions for matter. For matter and time to complement each other, the universe must be of a finite total mass that is finitely divisible and these two assumptions become the basis for a quantum time operator that complements the quantum matter operator.

Time becomes the duration of an action and an integration of changes in an object matter spectrum. Just as action is the integration of an object's changes in matter over time, action is also the integration of an object's changes in the time amplitudes of its matter spectrum. An object's changes in matter over time define the object in the present moment, which is within the time spectrum of the universe. Likewise, an object's changes in time amplitudes as a function of matter define an object's matter spectrum that is embedded within the matter spectrum of the boson universe.

Tuesday, September 30, 2014

Pulsar Spin Down

Pulsars are the wonderful gifts or time and are the clocks of our galaxy and really of our universe. Many stars just like our sun reach their destinys as rotating pulsars, white dwarfs, and neutron stars. These rotating bodies show us the way of our destiny as well as the way of our past.

Pulsar rotation is highly periodic, but because they are every dense, pulsars have very unusual properties as well much like the property of spin of the atomic nucleus. In contrast to the nuclear spin, pulsars radiate energy from their poles and it is the precession of those energy beacons that shines much like the rotating lighthouse of maritime lore. Each time a pulsar pole happens to point to earth, we measure a pulse of that pulsar and these pulses vary from periods of several seconds to several thousandths of a second, milliseconds.

The pulsars not only tick at very regular rates, pulsars also decay at very regular rates. Some pulsars actually increase in tick rate, but the vast majority of pulsar rates decay over time. This decay rate conforms to the classical αdot = 0.255 ppb/yr decay of matter time as shown by the red dash line in the figures below. This classical decay is proportional to the ratio of gravity and the square of charge and so is the unification of gravity and charge in matter time.

Millisecond pulsars are especially accurate timepieces and their trend in the plots below show an average decay that is very similar to the classical decay, and while this could be just a coincidence, it it perfectly consistent with a shrinking universe. Also maybe coincidentally, the measured earth spin down, earth moon orbit decay, and Milky way/Andromeda separation rates happen to fall on this same line...

The larger plot below shows where the hydrogen atom and electron spin frequencies lie on the spin down line...oh, and the earth-moon orbital decay is also well known. Note that orbital decay means frequency decay and that means the orbit increases in distance in order for the period to decrease. The classical electron spin velocity, c/α, defines a period for the electron spin and the matter decay, mdot, defines the slope of the decay line. These are the two axioms that drive all gravity and charge forces.

As you can see, both c/α and mdot are simply restatements of constants of science and not new parameters. The only new parameter here is that third axiom, m¥, the mass of the smallest particle, the gaechron. The ratio m¥ / me scales gravity to charge force, but does not show up on this plot since that is the period of the universe matter pulse, 27 Byr, of which we are 3.4 Byr into that matter pulse. However, the Andromeda-Milky Way galaxies separation decays at 0.267 ppb/yr, very close to the universe decay rate.

Now added is the Allan deviation noise curves for the 171Yb/87Sr lattice clock ratio. Once the ratio noise is coincident with the universal decay constant, that is to what the clock ratio converges.

Quasar Numbers and Luminosities

This plot shows 46,000 some odd quasars from the SDSS J dataset in terms of numbers per 250 Myrs as well as luminosity in terms of equivalent sun masses turned into energy. Note that while the quasar number densities peak at 10.25 Byrs, the luminosity keeps going up to one sun mass equivalent energy per year. The time scale assumes a Hubble constant H = 74 km/s/Mpc.

And of course, the matter time universe scales differently and below is the matter time equivalent plot. The matter time universe is 3.4 Byrs proper time and quasar luminosity scales much differently in an expanding force and decaying matter universe as opposed to the space and time expansion of the big bang (actually just by1/gamma^2). 

Thus the luminosity of quasars in the early epoch now is very similar to  galaxy luminosity in the current epoch, which is due to starlight and not the SMBH. The H = -288 km/s/Mpc, and of course, the Hubble constant is negative for decay and begins at the edge of the universe shrinking inward, just like one might expect for a gravitational universe.

There is also some great work with the number density and luminosities of all galaxies, Nature 469 504–507 (27 January 2011) doi:10.1038/nature09717. Here is a plot of luminosity of all galaxies as well as quasars as a function of Hubble time for the space time expanding universe.

and here is the corresponding plot for the matter time collapsing universe.

Runiverse = 2401 Mpc, 201 billion galaxies at 3.5 Mpc-3. The luminosity uv is the SDSS uv band while sfr is the star forming rate derived from cited models along with the constant galaxy density of 3.5 Mpc-3 shown below. Since there are 54 galaxies in our local group and diameter of 3.1 Mpc, there is 3.5 galaxies per Mpc3. 

Here is a plot of the local galaxy number density from PASJ: Publ. Astron. Soc. Japan 55, 757-770, 2003 August 25, There are 500,000 galaxies within z=2 in SDSS-10.

Here is the plot that shows it all. The galaxy number density is constant at 3.5 Mpc-3, but in a collapsing universe, the space-time metric evolves and the galaxy number density versus time is more like a quadratic function.

It appears that quasar number densities are on the order of 0.47% of galaxy numbers in a collapsing universe. This result is really crazy. What it means is that time lensing of the past affects how we interpret our universe.

The idea of a quasar as a composite of a boson star and an eternally collapsing object is very appealing. In this case, the event horizon represents a phase transition between a time-like fermionic matter, i.e. the ordinary matter of our universe, and the boson matter-like time of a boson star. Matter time does seem to provide a coupling between the fermions of a rotating accretion disk and the bosons of a rotating boson star.

This entity will accrete fermions into the event horizon, undergo phase transition to bosons and emit the balance of the fermions as light at the jets of the quasar.

It is very likely that thermodynamics will provide a useful way to handle this phase transition from two such different states of matter. In fact, there may be something quite similar going on at the centers of large neutron stars.

Friday, August 8, 2014

Cosmic Microwave Background as Creation

The cosmic microwave background (CMB) is a plasma that appears to be 2.7 K in the present epoch and exists in all directions in the sky. The CMB lies beyond all of the stars and galaxies and the cold, dark hydrogen of the past and the CMB represents the creation of all that exists. The CMB plasma spectrum peaks at 160 GHz and so that means that there is no absolute darkness since the CMB bathes us all in the background of CMB microwaves.

The actual CMB temperature is thought to be ~3000 K with a redshift of z = 1089, but that result comes from a specific model that is the CDM (cold dark matter) big bang cosmology. In the big bang, the CMB would be expanding at 99.91%c, but different cosmologies result in a range of predictions and the shrinking universe has a really cold interpretation for the CMB, just 0.64 K at z = 1089. In today's epoch, this temperature would be equivalent to the ionization energy of hydrogen at 13.6 eV, which is 158,000 K...a little bit warmer than the CMB.

In addition, very slight CMB temperature difference is called the CMB dipole, points the direction that the earth is moving through the cosmos. This arrow of time shows our path through the cosmos and defines both an origin and a destiny.
The CMB arrow shows where we came from, i.e. our origin, as well as where we are going, i.e. our destiny. Hurtling through space at 830,000 mph (371 km/s) means that we quickly leave the space of each moment behind and for each moment of thought, about 0.6 s, we move about 130 miles through the karma of the universe even though we imagine ourselves standing perfectly still.

If you ever feel like you are not going anywhere, now you can rest assured that we all are on a grand journey together through the karma of the universe and mom and dad, mother earth and father time, are driving. We note our karmic journey on March 11th and September 10th, the days where the sun and earth are best aligned with the CMB time arrow that points the destiny of the universe.

This diagram is called a Mollweide projection of the entire sky that shows how the cold blanket of the finite CMB creation dipole wraps all around us. Up and down are the 180 degrees of up and down from the plane of the galaxy and left and right are the 360 degrees as the Milky Way also wraps all around us.

In a shrinking aether universe, interpretations of cosmic objects like the CMB vary h, c, and alpha and a shrinking aether universe is much different from an expanding universe. Aether temperature, Tae = T (1+zae)/(1+zH), is a scaled cosmic temperature from the present epoch. Instead of the CMB rest frame temperature being 3,000 K as 2.7 K * (1 + z= 1090), the aether CMB temperature is just 0.64 K, which is 2.7 K x 260 / 1090 = 0.64 K in the aethertime rest frame for the CMB. The CMB motion is 0.24c towards us, which blue shifts the 0.64 K rest frame CMB to our 2.7 K rest frame all in aethertime.

The aethertime creation CMB is very close to the edge of the universe and represents cae = 0.062 c, just 6.2% of c in the current epoch and so force is also just 6.2% of that of the current epoch. Atomic time periods increase as atomic force decreases, and eventually universe time transitions from atomic time to aether decay time. Thus in aethertime, the singularity known as an event horizon simply represents the boundary of the shrinking aethertime universe. 

This interpretation of an aether event horizon differs sharply from that of spacetime and GR of mainstream science. Correspondingly, the event horizon of a singularity known as a black hole represents a similar transition from atomic time to aether decay time and the boson matter inside of a black hole is simply the same boson matter that makes up all of the universe. 

The fermion accretion disk of a black hole represents the same kind of boundary for a black hole as the CMB does for the universe, but now shifted from 0.64 K to the temperature 13.6 eV energy of hydrogen today. This energy corresponds to ultraviolet spectra called the Lyman series and Lyman blobs are often seen in the early universe with z > 2. In fact, a very large Lyman alpha blob called Himiko appears in the very early universe at z = 6.6 and is thought to represent a nascent black hole and galaxy.

Thursday, July 24, 2014

Gravitational Beamsplitter

A beamsplitter is a fundamental tool in optics that prepares a photon of light into two coherent states by dividing a parallel beam of light into two separate beam paths, A and B as in the figure. Usually a beamsplitter is a partially silvered mirror inside of a cube of otherwise transparent material and passes 50% of its light while reflecting the other 50% providing two possible futures for every single matter wave of light. This of course ignores the reflections and losses that occur at the other surfaces.

There are two interpretations for the action of a beamsplitter that represent two fundamentally different world views; ballistic and deterministic or relational and probabilistic. In a ballistic and deterministic worldview, the beamsplitter simply diverts each photon of light in the source beam onto either path A or path B. If you observe a photon at A, that means that that photon followed path A and that is why it was not seen at B.

In the second relational and probabilistic worldview, light actually follow both paths as matter waves and the beamsplitter introduces a coherence or relation between the two possible futures or states for each of two matter waves within the original source beam. In this relational worldview, light from the source propagates along both coherent paths A and B, but still an observer at A sees only 50% of the light waves as photons and does not see the other 50%, but now it is because of constructive and destructive interferences along both paths. Thus, a relational matter wave propagates from a source, the beamsplitter, along both relational paths A and B as a coherent superposition of paths A and B.

In a ballistic and deterministic worldview, seeing a photon at A means that that photon was always on path A and never on path B and that is why that photon as a particle did not appear at B. This is very intuitive and is largely what we experience in our macroscopic ballistic reality. In a relational and probabilistic worldview, though, seeing a photon at A does not mean that the light wave was only on path A. Even though that light wave did not appear as a photon at B, the light wave of that photon propagated on both A and B up until it was observed at A. So it was possible to have seen that photon at B up until actually seeing it at A. In essence, seeing A means not seeing B and the two events are coherent and related to each other instantaneously despite their separation in space and time.

This confusing superposition of quantum states A and B means that it is not a lack of knowledge that precludes knowledge of path A or B, it is rather an intrinsic superposition of matter waves that makes the precise path fundamentally unknowable. The result is not dependent on the nature of the observer and the photon can be absorbed by any object with the same result. The existence of unknowable paths is even more confusing to understand given the nature of our intuitive ballistic reality where all objects are located in unique places. It is difficult for us to imagine an object as a matter wave emanating from a source on more than one possible coherent and symmetric path. It is even more difficult for us to imagine any number of objects existing in the same place at one time. We only imagine single objects with single ballistic Cartesian trajectories and those paths are ultimately knowable even if we might not know them at the moment.  We find it difficult to imagine an object as a matter wave whose exact path is fundamentally uncertain.

The way that light waves interfere with themselves and with each other shows the truth of the relational worldview for light as matter waves. It is therefore true that objects behave as matter waves, including photons of light or people or planets, and an object as a matter wave can exist everywhere in the universe even though we only experience the object in one place. Each matter wave can have coherent relational states superimposed with different phases on other Cartesian worldlines. When a matter wave dephases or decoheres, it behaves like the ballistic and deterministic objects of our intuition. We can cause that dephasing or other objects can dephase a matter wave as well in the single object of our ballistic intuition.

We imagine a macroscopic reality that has objects on ballistic trajectories and for this reality, objects as matter waves have long since lost any other possible futures. When two incoherent objects collide, they collide in a ballistic reality. Two coherent objects, though, can pass through each other as matter waves given a gravity or charge mediated matter wave coherence and that coherence confuses our innate ballistic worldview.

In principle, a gravity beamsplitter as shown in the figure at right can prepare small objects like atoms or molecules into coherent gravity states. Two massive spheres like the earth and moon are in a binary orbit with each other as in the figure. Two much smaller and identical objects, A and B, are in orbits that intersect at the gravitational Lagrange point between the the earth and moon.

For quantum gravity, the identical Lagrange objects A and B can take on a superposition of coherent futures, one orbiting earth and the other in a complementary orbit around the moon and those two orbits interfere with each other. For any macroscopic object emitting and absorbing radiation, there is a fairly short time of dephasing and the object matter waves A and B will quickly dephase into either A or B ballistic orbits and the two incoherent objects may then collide at the orbit crossing.

For cold microscopic matter, though, a matter wave can persist for a much longer time as a superposition of two possible futures, orbits around the earth and moon. The result will be that the objects A and B can occupy the same space and will pass through each other and interfere with each other but not collide in the ballistic sense. As a result of this coherence, there is an extra binding energy for A and B due to the quantum exchange force between those paths.

Essentially, a coherent matter wave that includes both orbits and appears to act simultaneously across arbitrary separations, either appearing as an object or as a matter wave in orbits around earth and moon. The coherent identical objects {A, B} are part of an oscillating orbital state between earth and moon. If these two objects {A, B} are coherent, they will interfere with each other along a coherent trajectory back onto themselves. The gravity actions of coherent matter waves have many unexpected and nonintuitive effects.

For example, there is only a collisional future for {A, B} particles at the Lagrange orbital crossing in general relativity, while for quantum gravity there is also a wavelike exchange future for matter waves of properly phased objects {A, B}. Quantum gravity predicts an additional attractive force beyond just simple gravitational or charge forces for coherent matter as a result of exchange of identical particles. This additional gravity binding force due to quantum exchange and is what science now calls dark matter.

Quantum exchange forces are coherent relational actions that appear to act instantaneously over arbitrary separation. As a result, even though the exchange correction for the gravity of a galaxy is actually locally quite small compared to Newtonian gravity, over arbitrary separation, quantum gravity exchange can seem like a large amount of dark matter as an equivalent Newtonian gravity action within a galaxy.

A superposition state of hydrogen molecules that begins from a stationary ground state involves excitation with several quanta of infrared photons. Such an excitation has sufficient energy to accelerate a pair of neutral H2 molecules into low earth orbit at 8 km/s as shown.

As long as the two H2 molecules remain coherent, they do not collide in the classical sense despite being on the same orbit trajectory. Rather, they form a superposition state of the counterpropagating molecules that in effect interfere with each other. As soon as the hydrogens dephase, they experience a classical collision with any number of possible futures.

Note that the inverse process where heat is emitted from two molecules results in bonding states that we call gravity. Instead of bonding by displacement of charge, gravity bonding occurs as a result of displacement of neutral particles and emission of heat as photon pairs as quadrupoles. Typically science interprets the heating of a matter accretion as caused by gravity, but in matter time, it is the emission of heat as photon quadrupoles that causes gravity.

There is a very large number of gravity states for a matter accretion and therefore a very large entropy as well.

Friday, July 18, 2014

The Pleasure of Discovery

We each innately get pleasure in discovering how various parts of the universe work and we then make choices based on those discoveries that are each part of our life’s meaning and purpose. We have innate feelings and emotions and so we get pleasure discovering parts of life’s meaning and purpose that are necessarily beyond conscious rational thought as well. We make choices based on our feelings and emotions and beyond science and rational thought, our purpose in life is a primal belief in discovery and that meaning is a necessary primal belief that we all simply have for the purpose of discovery in each of our lives. We get pleasure discovering how various parts of the universe work, but we cannot test that purpose nor can we further describe that purpose except by the other two primal beliefs; the pleasure of our discovery of origin and destiny.
  • There are many who get pleasure discovering more than the meaning of life and how the universe works...they get pleasure discovering the meaning of everything. In order to discover the meaning of everything, though, one must first understand their innate anxiety about the dark lonely nothing of empty space.
The only way to define a primal axiom like the pleasure of discovery is with the other two complementary primal beliefs in the pleasure of origin and destiny. Even though our innate purpose is the pleasure of discovering how the universe works, if we somehow know where we are going in life, we also get pleasure in finding out how to get from where we are, our origin, to where we are going, our destiny, and we get pleasure discovering that journey.

Our pleasure in discovery is an axiom that is in some sense like the axiom of matter; since matter is just the way it is and there is no further definition of matter possible except by the two complementary primal axioms of action and time. Although we can say a matter object is red or is large or shiny, once we reduce an object description to a primal belief like matter itself, matter is just matter, which is an identity or ontology and therefore an axiom.

Of course, our life and consciousness are both prerequisites for an awareness of belief or of any other axiom. Just like objects are the accumulation of moments of matter, memory is an accumulation of moments of thought as the brain matter that is a part of consciousness. The matter moments of long-term memory couple with the neural recursion that comprises the moments of thought of a day. The sensation-feeling-action of present thought along with long-term memory and emotion completes the neural recursion that we call consciousness.

Our memory is a function of consciousness and memory is a record of the action as moments of thought. The neural recursion of action along with the memory that we have are both objective mechanisms of our mind that together form our consciousness. Our time-like consciousness, though, is a combination of these two objective properties of our brain that result in feeling. Therefore consciousness represents a subjective reality in our mind that complements the objective reality of the world outside of our mind. This dualism of mind and body has a long history in philosophy.

The question of our purpose has only one clear answer; our purpose is discovering how the parts of the universe work and so purpose is an identity and a primal belief that is only explicable as the other two complementary primal beliefs of origin and destiny. Ultimately, discovery is all about discovery for its own sake. Once again, we see the replay of the dual representations in the definitions of an axiom.

Purpose as discovery is how we get from where we are to our destiny, from yesterday until tomorrow and why we imagine desirable futures and how we make choices in our journey from an origin to a destiny. Therefore, purpose, origin, and destiny as such are always what other qualia (the properties of object, like color, weight, and so on) are like, whereas primal beliefs are not like anything else except combinations of their complementary axioms.

If you ask a person in what do they believe, their reply is usually in a religion or in a science or in a metaphysics and we imagine their beliefs are a purpose for their lives. Belief and meaning are essential to every conscious life and we all know how to answer the question of in what do we believe, but we do not often recognize that without belief, we simply cannot be.

We have an innate anxiety over the nothing that is the empty void of space and we each must first of all frame our reality to deal with this anxiety over the nothing of empty space and over being alone in that empty space. With our relational reality, instead of a largely empty space with just a few objects of our Cartesian reality, we fill time with the many possibilities of relations with those objects. We frame each of our lives and each of our physical realities with the three primal beliefs of origin, destiny, and purpose for all objects and this trimal is essential for predicting action and indeed trimal beliefs are necessary for survival.

We might have a purpose driven by innate anxiety, say about dying or about the empty voids of a lonely life or about what's for lunch, and yet we might not even consciously know why we are are anxious about dying or why we are anxious about being alone or why we are hungry. Such a hard-wired anxiety can drive purpose whereas anxiety is an emotion which we simply have and believe in and yet many want to associate our innate anxiety with a supernatural agent. Innate anxiety has evolved like so many of our other behaviors and is something that we just accept and deal with in a variety of ways.

We all are innately anxious about the empty voids of our lives and of the nothing of space and of being alone, but in order to understand anything, we must first believe in the nothing of empty space. Since most of the universe that we imagine is the nothing of empty space, that nothing is the most important part the universe that we imagine and that nothing is the most important thing in our lives as well. But nothing is really not as important as it seems.

It is important and often vital to be anxious about nothing since with nothing to eat or drink or without shelter or clothing, we could not survive very long. We look into the nothing of the dark sky at night and wonder about the points of light that we see as part of the universe, but we do not wonder about the empty nothing that separates those distant stars. That dark emptiness is just the same dark empty voids about which we are anxious in our lives.

It seems strange to be anxious about nothing since most of our reality is made up of the nothing of space, and yet we are more certain about the infinitely divisible nothing of empty space than we are about the objects that we sense embedded into that space. We sense many objects around us and so we know their directions quite well, but object distances can be very difficult to sense and know without some guide like parallax or a reflected echo or a standard candle or a tape measure. Space then is a very convenient way to keep track of the many objects of our reality and we get many cues about distance from other objects.

Religion often claims a special role for a supernatural agent everywhere in all the empty voids, especially for innate beliefs like anxiety, since a supernatural agent is fundamentally a belief in a void as something rather than nothing. Religion provides various supernatural agents that make us anxious about nothing, but there are also supernatural beliefs about nothing in science, albeit a more limited set, called axioms.

Where did the big bang come from? What exists inside of a black hole? What is the destiny of the universe? Where do physical laws and their constants come from? The untestable axioms of science provide a very rational framework for prediction of action and a further belief in the science of aethertime allows us to understand our reality.

We call the axioms of science natural because even though there is no way to understand why they are the way they are, we can accept science axioms and use them to predict future action by trusting the intercessories of science. Philosophy calls an ontology the axioms that we accept as true while philosophy calls an epistemology the rules that we derive from such axioms or ontology. In a completely analogous way, innate anxiety naturally affects behavior even if we do not necessarily understand the origin of that anxiety. We can call the innate anxiety over nothing natural or we can associate that innate anxiety with a supernatural agent of some kind for the nothing that we firmly believe does exist.

Although we see or sense objects in space all around us all of the time, we do not often wonder about the process of sensation, how sensation affects feeling, how feeling results in action, and the recursion of how our action results from sensation then in turn feeds back and affects sensation.

While there are clear roles for belief in axioms like matter, time, and action, we also believe firmly in the continuous void of empty space as well. What is space like? It turns out that we can describe objects and predict their futures without knowing the volumes they displace in space, but those volumes, surfaces, lines, and points of space do provide a very convenient frame of reference for action. We further use objects as landmarks in that space to anchor our sense of direction on earth and these landmarks are a prominent feature of conscious thought.

If we know the time delay of objects from each other and how aether exchanges relate objects to each other, we can describe an object as full of its possible futures without knowledge of motion or space or volume. Aethertime completely represents objects as superpositions of many possible futures with just matter, time, and action, and the Cartesian locations of objects emerge in our mind from that relational representation.

Cartesian space is an innate part of our imagination and is a convenient and also a very useful whiteboard for keeping track object action. Cartesian space is therefore deeply embedded into our consciousness and intuition and is a powerful tool of consciousness, but the limitations of continuous space and time can also blind us to a greater understanding of the universe.

We can trust the intercessories of science because science repeatedly tests its propositions against an objective reality, which means that the reality of science is largely of observable Cartesian objects and actions on trajectories in continuous space and time time. Science works best by observing the universe and then making predictions about object actions and then verifying those predictions by careful observations of action. An ongoing discourse of the principles of science provides a means to cull and prune and distill the essence of truth about our material world.

In a Cartesian particle-like reality, objects only interact weakly and exist on separate trajectories in continuous space and time. In a complementary relational reality, wave-like objects strongly interact and exist as matter waves that fill time with a large number of possible futures. A relational reality represents an object as a spectrum of matter waves with matter exchanges that relate it to all other objects as matter waves, which is a matter spectrum. For a reality of weakly interacting objects, though, science can measure and project a red object into a single location in Cartesian space. For the reality of strongly interacting objects, though, science cannot always test its predictions.

For highly relational objects like people, science is often limited to just observation and even though a person can relate their experiences such as that of seeing a red object, science cannot predict a person’s experience in seeing a red object without knowing everything about that person. An experience of a red color will vary from person to person and each person’s life will relate a different set of experiences of red objects to any new experience of a red object. Science can neither measure nor quantify a person’s relational experience of red even though science does very well predicting and measuring the objective Cartesian experience of a red object.

Once science knows enough about a person’s past experiences with red objects, science can then predict fairly well that a person’s experience will be much like those who have similar past experiences with red objects.

The qualities of our feelings about objects, though, are what we call subjective or relational experiences of objects and a feeling is not possible to test or falsify except by query and discourse. A red color, for example, is simply one of the many qualia that we use to help identify and classify objects. How we might feel about a red color is our feeling alone although we can use a machine to measure a red color for an object. Our feeling of the same red of an object is simply not possible to measure, although we can relate our experience of red to others.

Qualia are the hard wiring of our minds and human qualia are therefore a part of the augmentation of Cartesian space with discrete aether and we can describe our feelings about space to others. We associate certain qualia with objects in the same way that we associate the spoken sounds of language with objects and action in time. For example, the names we give objects and their properties allow us to relate those objects to other objects with similar properties and therefore we can predict action much more precisely and describe our predictions to others as well. As others describe their predictions of action to us, we cooperate and that cooperation provides the basis of civilization by enhancing survival in an objective universe.

We project the qualia of space around the objects that we observe. Whether an object is near or far away, whether it is high or low, or in which compass direction it lies, locating objects in space is an absolutely vital means of organizing reality in our mind. In this sense, the infinitely divisible void of empty space that we imagine is just a part of the more general notions of aethertime. In order to imagine objects, we certainly do believe in the null object of empty space and that belief defines how we predict the actions of objects as motion in empty space. But we can also derive any motion in space just from the exchange of an object’s matter in time since all motion is equivalent to a change in inertial mass.

The trimal axioms of discrete aether, time delay, and aether exchange are the primal qualia that relate objects to other objects and matter, time, and action are likewise hardwired into our consciousness. Matter-like qualia are red, black, heavy, light, pain, heat, cold, etc., and time-like qualia are fast, slow, quick, hurry, sluggish, etc., while action-like qualia are weak, strong, hard, soft, feeble, mighty, etc. We relate objects with similar qualia to each other to better predict and describe the likely futures of those objects.

The meaning, imagination, and feeling of each human life is woven into the fabric of civilization and our meaning becomes a part of the collective beliefs in which many of us share. However, just like there are thousands of languages, there are necessarily thousands of beliefs in the meaning of life as well. Despite the existence of many different languages, Chomsky and Wittgenstein have shown that languages are all rooted in the same machinery of our consciousness and that language machinery is part of what makes us human. In a similar way, the machinery of consciousness provides an innate purpose in finding out how the parts of the world work, but on which part of the world we focus varies just like language varies.

Our relational minds have the basic machinery of consciousness that relates objects to other objects as qualia for the purpose of finding out about the world. Just like language is a communication among people about objects, qualia are the relationals of our minds that permit us to find out about the world and describe experience. The machinery of consciousness is present in our minds, but we do need to learn the qualia of consciousness just as we need to learn the words to speak and how to place our feet to walk. Matter, time, and action form a trimal qualia of belief that are hardwired into our consciousness and therefore are a nexus or connection between the objectivity of science and subjectivity of experience.

For example, in our subjective experience of religion and philosophy, we often refer to the objectivity of science. But religion and philosophy deal largely with the relational and not the Cartesian world of consciousness. There is irony in that while aethertime reveals our Cartesian reality actually emerges from the actions of objects, we usually presume that our Cartesian reality is the only reality of both our religious and our scientific worlds.

There are plenty of indications of the limitations of Cartesian space. The infinite divisibility of a void of space, infinitely dividing nothing at all, has posed a conundrum ever since the philosophy of Aristotle and Zeno. More recently, quantum physics shows a universe that differs from that of Cartesian experience and relativity and evolution likewise show us a universe that is different from ordinary experience.

Our Cartesian space, motion, and time are very useful and indeed essential for predictions of action and will always be a very useful and therefore essential parts of consciousness. A Cartesian reality emerges from a multitude of very complex sensations into a few simple imaginings of important objects moving on time trajectories in a void of space. Even though we actually only sense some limited number of an object’s possibilities, with this very limited information, we nevertheless imagine that object and predict its journey through space and in time and sometimes we predict very well. Although we are part of an object’s matter spectrum, we usually presume that the reality that we sense is not affected by our presence.

Just as for all life, predictions of action are the basis of our survival as well and our action predictions evolve given the ever more elaborate stories of science. The stories of science have evolved into such complexity that it takes years of advanced study for even scientists to achieve a current understanding of just a tiny slice of the universe.

In fact, the enterprise of science divides into pieces that seem more like religions than any other religion has ever been. Today people believe very fervently in scientific concepts that they barely understand and sometimes, they simply do not understand them at all, they just believe them as told by a trusted intercessory.

When we do not understand a concept that is nevertheless important to us, we trust an intercessory when they tell us about the actions and objects of that concept. So we now have a new cadre inside of monasteries of science, preaching an everlasting life given the meaning of nothing. Instead of accepting the inexplicable walls of our own universe, some scientists now imagine universes far beyond any testable hypotheses within this universe. Not unlike the mystics of ancient China, India, or Greece, theories of everything abound and propagate and provide a fertile soil for nurturing humanity’s immortal soul.

We ask about the meaning of life because it is only with purpose that we discover how the universe works and we imagine desirable futures and choose actions to journey to those futures. The meaning of life really has no unique answer except as a reflection of the purpose of discovery, and without a purpose, we can have no life since there would be no desirable future, i.e., no desire to discover how to survive. We must discover our desire to survive with purpose and meaning and it is a desirable future that we discover as the purpose and meaning further discovery.

My dog asks for meaning and purpose from me...every day and many times a day. Of course not in human words, but dogs imagine desirable futures and choose actions to realize those futures just like we do.

My dog breathes, drinks, eats, seeks shelter, and constantly searches for scents in the backyard and park, and of course, he revels in the purpose of companionship. My dog loves to walk and smell and leave his scent in the park. He loves to be petted and will sit on any lap for hours and so my dog lives his life imagining and choosing desirable futures and his purpose evolves along with mine.

In fact, that is exactly what humans do as well. Purpose is different for different people and purpose evolves with each person over time, but basically is finding out about how the world works. Purpose is embedded within each life and purpose is why we imagine and choose desirable futures, and that purpose is part of what life is and therefore part of life’s meaning as well.

The recursion of purpose and meaning with a desirable future is actually deeply embedded into each of our life journeys even though it is not always easy to understand why we are on some of the journeys that we are on. When we ask about purpose, we imagine a desirable future with an answer from someone else that will give us purpose. But purpose comes ultimately from within each of us and it is only when we choose actions for a desirable future that we realize our purpose and meaning by those actions.

Our purpose is to understand how various parts of the universe work, imagine the possibilities of desirable futures, select one, and choose actions to journey to that desirable future. Our imagination and our consciousness exist only because of the compassion others and without other's compassion, there is no purpose and no meaning in our own lives either. We see others on very similar journeys in life and we therefore share some purpose and compassion and cooperate with each other on our journeys.

Howard Hughes was a very famous recluse who was selfish in his privacy. And yet Hughes was surrounded by a cadre of compassionate caretakers, bodyguards, and servants and so had compassion and selfishness with others. He also watched television and his security monitors relentlessly and sadly through much of his later life. His reclusive nature still gave him a purpose in discovery of the world around him that depended on the compassion of others that were not typical.

The Unabomber was a recluse who lived alone in a small cabin in Montana on a very modest fixed income. And yet he built explosive devices and mailed them to unsuspecting strangers as part of a selfish diatribe about the selfishness of technology. He found a very selfish purpose injuring strangers in the world with explosive devices since he had no compassion for people in the world with a more civil discourse.

My mother-in-law lived the last several years of her life in the fog of dementia. Unable to completely care for herself, she lived with my wife and me for her last years and we therefore became a part of her purpose. Without us around constantly relating to her, she would get very disoriented and agitated and so we simply could not leave her alone for very long periods of time. She was in some sense alone in her thoughts and increasingly unable to read or watch tv or listen to music.

Although she did read and watch tv and listen to music, she could not relate any of those experiences to anyone with whom she spoke. Her conversations became very rote and about things like the weather. At first, she could still talk about things of her past, experiences that she remembered, but like the driftwood of childhood amnesia, even those memories slowly eroded one by one as the dementia took her spirit from her. She would say that lunch tasted good and would enjoy eating lunch, but she could not remember what she had for lunch after lunch was finished.

Without the purpose and without belief of conscious desire to understand, she increasingly survived on her primitive desires until there was no sense even in those primitive desires and she passed away in a confusion of primitive meaning and purpose. “I am done,” were her final coherent words and a week later, she passed into the same oblivion into which we all shall pass.

We predict futures for isolated Cartesian objects by means of the trimal of matter, time, and action. Although knowing the relational trimal of origin, destiny, and purpose of an object is also helpful, for isolated objects, a Cartesian representation of objects in space is usually sufficient. Our Cartesian reality is a particle-like representation that imagines the isolated behavior of an object interacting with another isolated object.

For highly interacting relational objects like people, though, we need to know more about them and their purposes to predict their futures. That is, we can predict an object’s future by knowing its Cartesian properties of matter, time, and action, but to predict a person’s behavior, it is more important to know about that person’s motivation and purpose than about their Cartesian state. In fact our own relational reality is a wave-like representation that is more about the relations of objects with each other than it is about their Cartesian states.

We tend to ascribe human-like characteristics like purpose and meaning or compassion and selfishness to other objects as a result of the complexity of object action. This anthropomorphic tendency comes from our relational reality where trimal beliefs of origin, destiny, and purpose interpret the action of a complex system as a purpose. Purpose and meaning are simply a way to bond interacting objects within a complex system, and for people, purpose and meaning take on much more importance compared with other simple objects.

The importance of purpose and meaning is with predictions of action and prediction of human behavior also affects human behavior. We teach our children compassion in a complex relational civilization, but we also teach a certain amount of selfishness as well. We then predict their compassion versus selfishness as adults in response to various sensations, feelings, and actions and we are usually pretty good at those predictions.

If people are hungry and thirsty, they will selfishly find food and water. If they are cold and wet, they will selfishly find shelter. If they are on a journey, they will selfishly find transportation. If they are sick, they will selfishly find health care.

However, we are affected by the actions of others and the nature and purpose of our predictions evolve along with the nature and purpose of other’s predictions. These cooperative relations support a relational humanity that has its own purpose and meaning along with its own origin and destiny.

If people are hungry and thirsty, we will compassionately give them food and water. If they are cold and wet, we will compassionately provide them shelter. If they are on a journey, we will compassionately give them transportation. If they are sick, we will compassionately find them health care.

As an accretion of matter from a nebula, the sun in one sense is a selfish accident of time, but our sun has a compassionate purpose in warming us on the earth. While the sun as a Cartesian object follows the selfish physical laws of nature, it is the sun’s compassion relations that binds the earth with gravity and warms earth with radiation from its sun. In the sun’s relations with earth, we say there is purpose and meaning since the consequences of the sun’s warmth are the biomes that support life and support us in our purpose.

We might also consider the water on earth as an accident of time from the accumulation of comet impacts, but those comets are bound to the sun and earth and planets. Water as ice on a comet is a Cartesian object that follows the selfish physical laws while water as a compassionate relational object determines the destiny of earth’s oceans. The purpose of water is to support life just as our purpose is to support life by finding out about the world.

Finally, we might consider ourselves an selfish accident of time and that there is no compassionate reason for our existence, which is part of our innate anxiety about the nothing of space. We surmount that anxiety by finding out how the world works and we do find a purpose and meaning in existence and we do imagine desirable futures and we do act to journey to those futures.

Our purpose is an axiom and is how we deal with our anxiety about the nothing of space and how we get from where we are right now to one of the many possible futures that is our destiny. Both the compassion of relations among objects and the selfish loneliness of empty Cartesian space are our destiny.

Sunday, June 8, 2014

Milky Way Spirals Correlate with Life's Extinctions and Explosions

Since we are inside of our galaxy, it is difficult to imagine how our spiral galaxy, the Milky Way, looks from the outside. People have put together this diagram of what our galaxy would look like from above the plane of its disk. The sun is at the top of a dashed-yellow 225 million year orbit around the galaxy center. The sun's journey through the galaxy spiral features seems to correlate with various explosions and extinctions of life on earth as shown.

Although the correlation is not perfect, it is very suggestive that changes in our sun's luminosity occur during spiral transits and those changes result in changes in solar irradiance and therefore in earth's climate. Since spiral wave transits also affects the convective cooling of gravitationally compressed matter, spiral transits also impact earth's magma motion and tectonics and volcanism. There are also more gravitational perturbations within a spiral wave and more young stars with more gamma radiation.